Beyond Universal Saliency: Personalized Saliency Prediction with Multi-task CNN

نویسندگان

  • Yanyu Xu
  • Nianyi Li
  • Junru Wu
  • Jingyi Yu
  • Shenghua Gao
چکیده

Saliency detection is a long standing problem in computer vision. Tremendous efforts have been focused on exploring a universal saliency model across users despite their differences in gender, race, age, etc. Yet recent psychology studies suggest that saliency is highly specific than universal: individuals exhibit heterogeneous gaze patterns when viewing an identical scene containing multiple salient objects. In this paper, we first show that such heterogeneity is common and critical for reliable saliency prediction. Our study also produces the first database of personalized saliency maps (PSMs). We model PSM based on universal saliency map (USM) shared by different participants and adopt a multitask CNN framework to estimate the discrepancy between PSM and USM. Comprehensive experiments demonstrate that our new PSM model and prediction scheme are effective and reliable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalized Saliency and its Prediction

Almost all existing visual saliency models focus on predicting a universal saliency map across all observers. Yet psychology studies suggest that visual attention of different observers can vary a lot under some specific circumstances, especially when they view scenes with multiple salient objects. However, few work explores this visual attention difference probably because of lacking a proper ...

متن کامل

Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

This paper proposes a novel saliency detection method by combining region-level saliency estimation and pixel-level saliency prediction with CNNs (denoted as CRPSD). For pixel-level saliency prediction, a fully convolutional neural network (called pixel-level CNN) is constructed by modifying the VGGNet architecture to perform multiscale feature learning, based on which an image-to-image predict...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

Weakly Supervised Top-down Salient Object Detection

Top-down saliency models produce a probability map that peaks at target locations specified by a task/goal such as object detection. They are usually trained in a fully supervised setting involving pixel-level annotations of objects. We propose a weakly supervised top-down saliency framework using only binary labels that indicate the presence/absence of an object in an image. First, the probabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017